
Assessing the Guilt Probability in Intentional
Data Leakage

Yadav Gitanjali B., Bhaskar P. C., Dr. Kamat R. K.
#Department Of Technology, Shivaji University

Kolhapur, Maharashtra, India

Abstract—For most corporations the volume of sensitive data
used by outsourcing providers continues to increase. As the
number of different entities having access to a database
increases, it gets harder to prevent and trace-back data
leakage. We address the problems of proving ownership and
unauthorized data distribution (leakage) for relational
databases. We propose the technique that altogether may be
used to detect, deter and trace-back data leaks from relational
databases. We use business process outsourcing scenarios as
the descriptive use case, but our techniques are equally
applicable in other use cases when a relational database is
shared among many parties and its confidentiality and
authenticity needs to be protected. In early days
watermarking and fingerprinting is used to prove ownership
and track unauthorized redistributions of numerical relational
data respectively. In this work we are inserting “realistic but
fake” objects to our database, which is just similar to
watermarking.
Keywords: distribution model; guilty agent; fake objects;
sensitive information.

I. INTRODUCTION
Nowadays, sensitive information has become more
significant for financial departments, medical organizations,
security sectors, and enterprises worldwide. Once the
information is leaked, the owners may suffer a great loss.
Here sensitive data encompasses a wide range of
information and can include: your ethnic or racial origin;
political opinion; religious or other similar beliefs;
memberships; physical or mental health details; personal
life; or criminal or civil offences. These examples of
information are protected by your civil rights.
Sensitive data can also include information that relates to
you as a consumer, client, employee, patient or student; and
it can be identifying information as well: your contact
information, identification cards and numbers, birth date,
and parents’ names.
 Based on publicly disclosed Data Leakage
breaches, the type of data leaked is broken down as follows:

Type Of Information
Leaked

Percentage

Confidential Information 15%
Intellectual Property 4%
Customer Data 73%
Health records 8%

In the course of doing business, sometimes this sensitive
data must be handed over to supposedly trusted third parties.
For example, a hospital may give patient records to
researchers who will devise a new treatment. Similarly,
accompany may have partnership with other companies that
require sharing customer data. Another enterprise may

outsource its data processing, so data must be given to
various other companies. We consider here two entities:
Distributor: The owner of data
Agents: Supposedly trusted third parties to whom data is
given.
Our goal is to detect which agent leaked the data.
 We consider applications where original sensitive
data cannot be perturbed. Perturbation is a very useful
technique where the data is modified and made “less
sensitive” before being handed to agents. For example, one
can add random noise to certain attributes, or one can
replace exact values by ranges [7]. However, in some cases
it is important not to alter the original distributor’s data. For
example, if an outsourcer is doing a payroll, he must have
the exact salary and customer identification numbers. If
medical researchers will be treating patients (as opposed to
simply computing statistics) they may need accurate data for
the patients.
Traditionally, leakage detection is handled by
watermarking,[5] e.g., a unique code is embedded in each
distributed copy. If that copy is later discovered in the hands
of an unauthorized party, the leaker can be identified.
Watermark can be very useful in some cases, but again,
involve some modification of the original data.
Furthermore, watermark can sometimes be destroyed if the
data recipient is malicious.
Here we introduced unobtrusive techniques for detecting
data leakage of set of objects or records. We developed a
model for assessing the “guilt” of agents. We also gave the
algorithms for distributing objects to agents, in a way that
improves our chances of identifying a leaker. Finally, we
also consider the option of adding “fake” objects to the
distributed set. Such objects do not correspond to real
entities but appear realistic to the agents. In a sense, the fake
objects act as a type of watermark for the entire set, without
modifying any individual members. If it turns out an agent
was given one or more fake objects that were leaked, then
the distributor can be more confident that agent was guilty.
Data allocation strategies featured with fake objects
injection are proposed by Ref.[2] , but they consider fixed
number of agents. In this paper we are considering the
online requests of the agents.

II. RELATED WORK
The data leakage prevention based on the trustworthiness
[1] is used to assess the trustiness of the customer.
Maintaining the log of all customer’s request is related to
the data provenance problem [3] i.e. tracing the lineage of
objects. The data allocation strategy used is more relevant to
the watermarking [4],[5] that is used as a means of
establishing original ownership of distributed objects.

Yadav Gitanjali B et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4075-4078

4075

There are also different mechanisms to allow only
authorized users to access the sensitive information [6]
through access control policies, but these are restrictive and
may make it impossible to satisfy agent’s requests.

III. GUILT DETECTION MODEL
A. Problem Definition:
The distributor owns the sensitive data set T= { t1, t2,
……….., tn}. The agent Ai request the data objects from
distributor. The objects in T could be of any type and size,
e.g. they could be tuples in a relation, or relations in a
database. The distributor gives the subset of data to each
agent. After giving objects to agents, the distributor
discovers that a set L of T has leaked. This means some
third party has been caught in possession of L. The agent Ai

receives a subset Ri of objects T determined either by
implicit request or an explicit request.
 Implicit Request Ri = Implicit(T, mi) : Any subset
of mi records from T can be given to agent Ai
 Explicit Request Ri = Explicit(T, Condi) : Agent Ai
receives all T objects that satisfy Condi
B. Guilt Assessment:
 Let L denote the leaked data set that may be leaked
intentionally or guessed by the target user. Since agent
having some of the leaked data of L, may be susceptible for
leaking the data. But he may argue that he is innocent and
that the L data were obtained by target through some other
means.
Our goal is to assess the likelihood that the leaked data
came from the agents as opposed to other resources. e.g. if
one of the object of L was given to only agent A1, we may
suspect A1 more. So probability that agent A1 is guilty for
leaking data set L is denoted as Pr {G1 | L}.
C. Guilt Probability Computation:
For the sake of simplicity our model relies on two
assumptions:
Assumption 1: For all t1, t2, ………..,tn Є L and t1≠ t2 ,
the provenance of t1 is independent of t2 .
Assumption 2: Tuple t Є L can only be obtained by third
user in one of the two ways:
1. Single user A1 leaked t or
2. Third user guessed t with the help of other resources.
Now to compute the guilt probability that he leaks a single
object t to L, we define a set of users. To find the
probability that an agent Ai is guilty for the given set L,
consider the target guessed t1 with probability p and that
agent leaks t1 to L with probability 1-p. First compute the
probability that he leaks a single object to L. To compute
this, define the set of agents Ut = {Ai | t Є Ri } that have t in
their data sets. Then using Assumption 2 and known
probability p, we have,
Pr {Some agent leaked t to L} = 1-p ------(1)
Assuming that all agents that belongs to Ut can leak t to L
with equal probability and using Assumption 2 we get,

ሻۺ ܗܜ ܜ ܌܍ܓ܉܍ܔ ܑۯሺ࢘ࡼ ൌ ቊ
ି

࢚ࢁ
 ࢌ , א ࢚ࢁ

 ࢋ࢙࢝࢘ࢋࢎ࢚ࡻ
 ----(2)

Given that user Ai is guilty if he leaks at least one value to
L, with assumption 1 and equation 2, we can compute the
probability Pr {Gi | L} that user Ai is guilty :
ሽۺ | ሼ۵ܑ ܚ۾ ൌ െ ∏ ቀ

ିሺିሻ

࢚ࢁ
ቁࡾתࡸא࢚ -----(3)

D. Data Allocation Strategies:
The distributor gives the data to agents such that he can
easily detect the guilty agent in case of leakage of data. To
improve the chances of detecting guilty agent, he injects
fake objects into the distributed dataset. These fake objects
are created in such a manner that, agent cannot distinguish it
from original objects. One can maintain the separate dataset
of fake objects or can create it on demand. In this paper we
have used the dataset of fake tuples.
Depending upon the addition of fake tuples into the agent’s
request, data allocation problem is divided into four cases
as:
i. Explicit request with fake tuples
ii. Explicit request without fake tuples
iii. Implicit request with fake tuples
iv. Implicit request without fake tuples.
For example, distributor sends the tuples to agents A1 and
A2 as
R1= {t1, t2} and R2= { t1}. If the leaked dataset is L={ t1},
then agent A2 appears more guilty than A1. So to minimize
the overlap, we insert the fake objects into one of the
agent’s dataset.
E. Overlap Minimization:
The distributor’s data allocation to agent has one constraint
and one objective. The distributor’s constraint is to satisfy
agent’s request, by providing them with the number of
objects they request or with all available objects that satisfy
their conditions. His objective is to be able to detect an
agent who leaks any portion of his data.
We consider his constraint as strict. The distributor may not
deny serving an agent request and may not provide agents
different perturbed versions of the same object.
The objective is to maximize the chances of detecting guilty
agent that leaks all his data objects.
The Pr {Gi | L= Ri} is the probability that agent Ai is guilty
if distributor discovers a leaked table L that contains all Ri
objects.
The difference function ∆ (i, j) is defined as
∆ሺ݅, ݆ሻ ൌ PrሼG୧|R୧ሽ െ Pr൛G୨หR୧ൟ ݅, ݆ ൌ 1, … … . ݊
The value of ∆ is positive if for any agent Aj, whose set Rj
does not contain all data of L. It is negative in case of Ri

⊆Rj . The larger the ∆ value is, the easier it is to identify Ai

is guilty.

Problem definition: Let the distributor have data request
from n agents. The distributor wants to give tables R1
,R2…….. Rn to agents A1 ,A2…………. An respectively, so that
 Distribution satisfies agent’s request; and
 Maximizes the guilt probability differences ∆ (i, j)
for all i, j= 1, 2, ……n and i≠j.

Optimization Problem:
Maximizing the difference among distributed dataset
increases the minimization of overlap.
i.e ܠ܉ܕሺࡾ࢘ࢋ࢜,……….,ࡾሻሺ… … , ∆ሺ, ,ሻ … . ሻ ്

Then

ܖܑܕ
ሺࡾ ࢘ࢋ࢜,…….,ࡾሻ

൬… … , ฬ
ࡾ ת ࡾ

|ࡾ|
ฬ൰ ്

Yadav Gitanjali B et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4075-4078

4076

IV. EXPERIMENTAL SETUP
In this paper, we presented the algorithm and the
corresponding results for the explicit data allocation with
the addition of fake tuples. Whenever any user request for
the tuples, it follows the following steps:

1. The request is sent by the user to the distributor.
2. The request may be implicit or explicit.
3. If it is implicit a subset mi of the data set T is given.
4. If request is implicit, it is checked with the log, if any

previous request is same.
5. If request is same then system gives the data objects

that are not given to previous agent.
6. If request is explicit, 10% tuples inserted in it are fake.
7. Leaked data set L, obtained by distributor is given as an

input.
8. Calculate the guilt probability Gi of user using II.
9.
In the case where we get similar guilt probabilities of the
agents, we consider the trust value of agent. These trust
values are calculated from the historical behavior of agents.
The calculation of trust value is not given here, we just
assumed it. The agent having low trust value is considered
as guilty agent.
The algorithm for allocation of dataset on agent’s explicit
request is given below.
A. Explicit data Allocation with fake tuples:
To improve the chances of finding guilty agent we can add
the fake tuples to their data sets. Here we maintained the
table for fake tuples and add randomly these tuples to the
agent’s dataset.
Similarly, we can distribute the dataset for implicit request
of agent. For implicit request the subset of distributor’s
dataset (mi ⊆T) is selected randomly. Thus with the

implicit data request we get ቀ|்|

ቁ different subsets. Hence

there are ∏ ቀ|்|

ቁ
ୀଵ different data allocations. An object

allocation that satisfies requests and ignores the distributor’s
objective is to give each agent Ai unique subset of T of size
m. The following algorithm allocates to an agent the data
record that yields the minimum increase of the maximum
relative overlap among any pair of agents.
Here the agent’s requests are not of the same size (i.e. for
every agent mi is different). Thus our algorithm works well
for the case |T| ≤ M ≤ 4|T|, where ܯ ൌ ∑ ݉

ୀଵ . The

algorithm presented implements a variety of data
distribution strategies that can improve the distributor’s
chances of identifying a leaker. It is shown that distributing
objects judiciously can make a significant difference in
identifying guilty agents, especially in cases where there is
large overlap in the data that agents must receive. Again
addition of fake tuples to the implicit request maximizes the
chances of detecting guilty agent.

IV. EXPERIMENTAL RESULTS

In our scenarios we have taken a set of 600 objects and
requests from every agent are accepted. The system works
fine for 20 agents where total sent tuples are nearly 5|T|.
The flow of our system is given as follows

1. Agent send explicit or implicit request to the
distributor

Fig1. Agent Login

Fig2. Agent’s Explicit Request

2. Distributor sends tuples to agents

Fig3. Distribution of dataset

3. Detection of Guilty Agent

Fig4. Leaked dataset given as input to the system

Yadav Gitanjali B et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4075-4078

4077

Fig5. Summary of overlap with leaked dataset

Fig 6. Sample request from 10 agents

Fig.7 Sample request from 14 agents

V. CONCLUSION
Data leakage happens every day when sensitive business
information such as customer or patient data, source code or
design specifications, intellectual property and trade secrets
are leaked out. When these are leaked out it leaves the
company unprotected and goes outside the jurisdiction. This
uncontrollable data leakage put business in a vulnerable
position. Once this data is no longer within the domain, then
company is at serious risk. When cybercriminals “cash out”
or sell this data for profit it costs our organization money,
damages the competitive advantage, brand, and reputation
and destroys customer trust. Our presented model assesses
the “guilt” of agents. The main focus of this project is the
data allocation problem. It specifies how the distributor can
“intelligently” give data to agents in order to improve the
chances of detecting a guilty agent. By adding fake objects
to distributed set, the distributor can find the guilt agent
easily.

REFERENCES
1. YIN Fan, WANG Yu, WANG Lina, Yu Rongwei. A

Trustworthiness-Based Distribution Model for Data Leakage
Detection: Wuhan University Journal Of Natural Sciences.

2. P. Papadimitriou and H. Garcia-Molina. Data leakage
detection.Technical report, Stanford University, 2008.

3. P. Buneman, S. Khanna and W.C. Tan. Why and where: A
characterization of data provenance. ICDT 2001, 8th
International Conference, London, UK, January4-6, 2001,
Proceedings, volume 1973 of Lecture Notes in Computer
Science, Springer, 2001.

4. S. Czerwinski, R. Fromm, and T. Hodes. Digital music
distribution and audio watermarking.

5. Rakesh Agrawal, Jerry Kiernan. Watermarking Relational
Databases// IBM Almaden Research Center

6. S. Jajodia, P. Samarati, M. L. Sapino, and V. S.
Subrahmanian. Flexible support for multiple access control
policies. ACM Trans. Dataset Systems, 26(2):214-260,2001.

7. L. Sweeney. Achieving k- anonymity privacy protection using
generalization and suppression. International Journal on
Uncertainty, Fuzzyness and Knowledge-based Systems-2002

0

0.2

0.4

0.6

0.8

1

12.5 37.5 62.5 75 100

G
u
ilt
 P
ro
b
ab

ili
ty
 P
r{
 G
i |
 S
 }

Overlap with Leaked Set|Ri∩ S| / |S| %

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

11.1 22.2 33.3 44.4 55.5 77.8 100

G
u
ilt
 P
ro
b
ab

ili
ty
 P
r{
 G
i |
 S
 }

Overlap with Leaked Set|Ri∩ S| / |S| %

Yadav Gitanjali B et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4075-4078

4078

