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Abstract—For most corporations the volume of sensitive data 
used by outsourcing providers continues to increase. As the 
number of different entities having access to a database 
increases, it gets harder to prevent and trace-back data 
leakage. We address the problems of proving ownership and 
unauthorized data distribution (leakage) for relational 
databases. We propose the technique that altogether may be 
used to detect, deter and trace-back data leaks from relational 
databases. We use business process outsourcing scenarios as 
the descriptive use case, but our techniques are equally 
applicable in other use cases when a relational database is 
shared among many parties and its confidentiality and 
authenticity needs to be protected. In early days  
watermarking and fingerprinting is used to prove ownership 
and track unauthorized redistributions of numerical relational 
data respectively. In this work we are inserting “realistic but 
fake” objects to our database, which is just similar to 
watermarking.  
Keywords:  distribution model; guilty agent; fake objects; 
sensitive information. 
 

I. INTRODUCTION 
Nowadays, sensitive information has become more 
significant for financial departments, medical organizations, 
security sectors, and enterprises worldwide. Once the 
information is leaked, the owners may suffer a great loss.  
Here sensitive data encompasses a wide range of 
information and can include: your ethnic or racial origin; 
political opinion; religious or other similar beliefs; 
memberships; physical or mental health details; personal 
life; or criminal or civil offences. These examples of 
information are protected by your civil rights. 
Sensitive data can also include information that relates to 
you as a consumer, client, employee, patient or student; and 
it can be identifying information as well: your contact 
information, identification cards and numbers, birth date, 
and parents’ names. 
 Based on publicly disclosed Data Leakage 
breaches, the type of data leaked is broken down as follows: 
 

Type Of Information 
Leaked 

Percentage 

Confidential Information 15% 
Intellectual Property 4% 
Customer Data 73% 
Health records 8% 

 
In the course of doing business, sometimes this sensitive 
data must be handed over to supposedly trusted third parties. 
For example, a hospital may give patient records to 
researchers who will devise a new treatment. Similarly, 
accompany may have partnership with other companies that 
require sharing customer data. Another enterprise may 

outsource its data processing, so data must be given to 
various other companies. We consider here two entities: 
Distributor: The owner of data 
Agents:  Supposedly trusted third parties to whom data is 
given. 
Our goal is to detect which agent leaked the data. 
 We consider applications where original sensitive 
data cannot be perturbed. Perturbation is a very useful 
technique where the data is modified and made “less 
sensitive” before being handed to agents. For example, one 
can add random noise to certain attributes, or one can 
replace exact values by ranges [7]. However, in some cases 
it is important not to alter the original distributor’s data. For 
example, if an outsourcer is doing a payroll, he must have 
the exact salary and customer identification numbers. If 
medical researchers will be treating patients (as opposed to 
simply computing statistics) they may need accurate data for 
the patients. 
Traditionally, leakage detection is handled by 
watermarking,[5] e.g., a unique code is embedded in each 
distributed copy. If that copy is later discovered in the hands 
of an unauthorized party, the leaker can be identified. 
Watermark can be very useful in some cases, but again, 
involve some modification of the original data. 
Furthermore, watermark can sometimes be destroyed if the 
data recipient is malicious. 
Here we introduced unobtrusive techniques for detecting 
data leakage of set of objects or records. We developed a 
model for assessing the “guilt” of agents. We also gave the 
algorithms for distributing objects to agents, in a way that 
improves our chances of identifying a leaker. Finally, we 
also consider the option of adding “fake” objects to the 
distributed set. Such objects do not correspond to real 
entities but appear realistic to the agents. In a sense, the fake 
objects act as a type of watermark for the entire set, without 
modifying any individual members. If it turns out an agent 
was given one or more fake objects that were leaked, then 
the distributor can be more confident that agent was guilty. 
Data allocation strategies featured with fake objects 
injection are proposed by Ref.[2] , but they consider fixed 
number of agents. In this paper we are considering the 
online requests of the agents. 
 

II. RELATED WORK 
The data leakage prevention based on the trustworthiness 
[1] is used to assess the trustiness of the customer. 
Maintaining the log of all customer’s request is related to 
the data provenance problem [3] i.e. tracing the lineage of 
objects. The data allocation strategy used is more relevant to 
the watermarking [4],[5] that is used as a means of 
establishing original ownership of distributed objects. 
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There are also different mechanisms to allow only 
authorized users to access the sensitive information [6] 
through access control policies, but these are restrictive and 
may make it impossible to satisfy agent’s requests. 
 

III. GUILT DETECTION MODEL 
A. Problem Definition: 
The distributor owns the sensitive data set T= { t1, t2, 
……….., tn}. The agent Ai request the data objects from 
distributor. The objects in T could be of any type and size, 
e.g. they could be tuples in a relation, or relations in a 
database.  The distributor gives the subset of data to each 
agent. After giving objects to agents, the distributor 
discovers that a set L of T has leaked. This means some 
third party has been caught in possession of L. The agent Ai   

receives a subset Ri of objects T determined either by 
implicit request or an explicit request. 
 Implicit Request Ri = Implicit(T,  mi) : Any subset 
of mi records from T can be given to agent Ai  
 Explicit Request Ri = Explicit(T, Condi) : Agent Ai 
receives all T objects that satisfy Condi 
B. Guilt Assessment: 
 Let L denote the leaked data set that may be leaked 
intentionally or guessed by the target user. Since agent 
having some of the leaked data of L, may be susceptible for 
leaking the data. But he may argue that he is innocent and 
that the L data were obtained by target through some other 
means. 
Our goal is to assess the likelihood that the leaked data 
came from the agents as opposed to other resources. e.g. if 
one of the object of L was given to only agent A1, we may 
suspect A1 more. So probability that agent A1 is guilty for 
leaking data set L is denoted as Pr {G1 | L}. 
C. Guilt Probability Computation: 
For the sake of simplicity our model relies on two 
assumptions: 
Assumption 1:  For all t1, t2, ………..,tn  Є L and    t1≠ t2 , 
the provenance of t1 is independent of  t2 . 
Assumption 2:  Tuple t Є L can only be obtained by third 
user in one of the two ways: 
1. Single user A1 leaked t or 
2. Third user guessed t with the help of other resources. 
Now to compute the guilt probability that he leaks a single 
object t to L, we define a set of users. To find the 
probability that an agent Ai is guilty for the given set L, 
consider the target guessed t1 with probability p and that 
agent leaks t1 to L with probability 1-p. First compute the 
probability that he leaks a single object to L. To compute 
this, define the set of agents Ut = {Ai | t Є Ri } that have t in 
their data sets. Then using Assumption 2 and known 
probability p, we have, 
Pr {Some agent leaked t to L} = 1-p ------(1) 
Assuming that all agents that belongs to Ut can leak t to L 
with equal probability and using Assumption 2 we get, 

ሻۺ ܗܜ ܜ ܌܍ܓ܉܍ܔ ܑۯሺ࢘ࡼ ൌ ቊ
ି

࢚ࢁ
 ࢌ             , א        ࢚ࢁ

                 ࢋ࢙࢝࢘ࢋࢎ࢚ࡻ
 ----(2) 

Given that user Ai is guilty if he leaks at least one value to 
L, with assumption 1 and equation 2, we can compute the 
probability Pr {Gi | L} that user Ai is guilty : 
ሽۺ | ሼ۵ܑ ܚ۾ ൌ  െ ∏ ቀ

ିሺିሻ

࢚ࢁ
ቁࡾתࡸא࢚         -----(3) 

D. Data Allocation Strategies: 
The distributor gives the data to agents such that he can 
easily detect the guilty agent in case of leakage of data. To 
improve the chances of detecting guilty agent, he injects 
fake objects into the distributed dataset. These fake objects 
are created in such a manner that, agent cannot distinguish it 
from original objects. One can maintain the separate dataset 
of fake objects or can create it on demand. In this paper we 
have used the dataset of fake tuples. 
Depending upon the addition of fake tuples into the agent’s 
request, data allocation problem is divided into four cases 
as: 
i. Explicit request with fake tuples 
ii. Explicit request without fake tuples 
iii. Implicit request with fake tuples 
iv. Implicit request without fake tuples. 
For example, distributor sends the tuples to agents A1 and 
A2 as  
R1= {t1, t2} and R2= { t1}. If the leaked dataset is  L={ t1}, 
then agent A2 appears more guilty than A1. So to minimize 
the overlap, we insert the fake objects into one of the 
agent’s dataset. 
E. Overlap Minimization: 
The distributor’s data allocation to agent has one constraint 
and one objective. The distributor’s constraint is to satisfy 
agent’s request, by providing them with the number of 
objects they request or with all available objects that satisfy 
their conditions. His objective is to be able to detect an 
agent who leaks any portion of his data. 
We consider his constraint as strict. The distributor may not 
deny serving an agent request and may not provide agents 
different perturbed versions of the same object. 
The objective is to maximize the chances of detecting guilty 
agent that leaks all his data objects. 
The Pr {Gi | L= Ri} is the probability that agent Ai is guilty 
if distributor discovers a leaked table L that contains all Ri 
objects. 
The difference function ∆ (i, j) is defined as 
∆ሺ݅, ݆ሻ ൌ  PrሼG୧|R୧ሽ െ Pr൛G୨หR୧ൟ      ݅, ݆ ൌ 1, … … . ݊ 
The value of ∆ is positive if for any agent Aj, whose set Rj 
does not contain all data of L. It is negative in case of Ri 

⊆Rj  . The larger the ∆ value is, the easier it is to identify Ai 

is guilty. 
 
Problem definition: Let the distributor have data request 
from n agents. The distributor wants to give tables R1 
,R2…….. Rn to agents A1 ,A2…………. An respectively, so that  
 Distribution satisfies agent’s request; and 
 Maximizes the guilt probability differences ∆ (i, j) 
for all i, j= 1, 2, ……n and i≠j. 
  
Optimization Problem:  
Maximizing the difference among distributed dataset 
increases the minimization of overlap. 
i.e ܠ܉ܕሺࡾ࢘ࢋ࢜,……….,ࡾሻሺ… … , ∆ሺ, ,ሻ … . ሻ          ്  

 
Then  

ܖܑܕ
ሺࡾ ࢘ࢋ࢜,…….,ࡾሻ

൬… … , ฬ
ࡾ ת ࡾ

|ࡾ|
ฬ൰           ്  
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IV. EXPERIMENTAL SETUP 
In this paper, we presented the algorithm and the 
corresponding results for the explicit data allocation with 
the addition of fake tuples. Whenever any user request for 
the tuples, it follows the following steps: 
 
1. The request is sent by the user to the distributor. 
2. The request may be implicit or explicit. 
3. If it is implicit a subset mi of the data set T is given. 
4. If request is implicit, it is checked with the log, if any 

previous request is same. 
5. If request is same then system gives the data objects 

that are not given to previous agent. 
6. If request is explicit, 10% tuples inserted in it are fake. 
7. Leaked data set L, obtained by distributor is given as an 

input. 
8. Calculate the guilt probability Gi of user using II. 
9.  
In the case where we get similar guilt probabilities of the 
agents, we consider the trust value of agent. These trust 
values are calculated from the historical behavior of agents. 
The calculation of trust value is not given here, we just 
assumed it. The agent having low trust value is considered 
as guilty agent. 
The algorithm for allocation of dataset on agent’s explicit 
request is given below. 
A.  Explicit data Allocation with fake tuples: 
To improve the chances of finding guilty agent we can add 
the fake tuples to their data sets. Here we maintained the 
table for fake tuples and add randomly these tuples to the 
agent’s dataset. 
Similarly, we can distribute the dataset for implicit request 
of agent. For implicit request the subset of distributor’s 
dataset ( mi ⊆T ) is selected randomly. Thus with the 

implicit data request we get ቀ|்|


ቁ  different subsets. Hence 

there are ∏ ቀ|்|


ቁ
ୀଵ  different data allocations. An object 

allocation that satisfies requests and ignores the distributor’s 
objective is to give each agent Ai unique subset of T of size 
m. The following algorithm allocates to an agent the data 
record that yields the minimum increase of the maximum 
relative overlap among any pair of agents.  
Here the agent’s requests are not of the same size (i.e. for 
every agent mi is different). Thus our algorithm works well 
for the case |T| ≤ M ≤ 4|T|, where  ܯ ൌ ∑ ݉


ୀଵ  . The 

algorithm presented implements a variety of data 
distribution strategies that can improve the distributor’s 
chances of identifying a leaker. It is shown that distributing 
objects judiciously can make a significant difference in 
identifying guilty agents, especially in cases where there is 
large overlap in the data that agents must receive. Again 
addition of fake tuples to the implicit request maximizes the 
chances of detecting guilty agent. 

 
IV. EXPERIMENTAL RESULTS 

In our scenarios we have taken a set of 600 objects and 
requests from every agent are accepted. The system works 
fine for 20 agents where total sent tuples are nearly 5|T|. 
The flow of our system is given as follows 

1. Agent send explicit or implicit request to the 
distributor 

 
Fig1. Agent Login 

 

 
Fig2. Agent’s Explicit Request 

 
2. Distributor sends tuples to agents 

 
Fig3. Distribution of dataset 

 
3. Detection of Guilty Agent 

 
Fig4. Leaked dataset given as input to the system 
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Fig5. Summary of overlap with leaked dataset 

 

 
Fig 6. Sample request from 10 agents 

 

Fig.7 Sample request from 14 agents 

 

V. CONCLUSION 
Data leakage happens every day when sensitive business 
information such as customer or patient data, source code or 
design specifications, intellectual property and trade secrets 
are leaked out. When these are leaked out it leaves the 
company unprotected and goes outside the jurisdiction. This 
uncontrollable data leakage put business in a vulnerable 
position. Once this data is no longer within the domain, then 
company is at serious risk. When cybercriminals “cash out” 
or sell this data for profit it costs our organization money, 
damages the competitive advantage, brand, and reputation 
and destroys customer trust. Our presented model assesses 
the “guilt” of agents. The main focus of this project is the 
data allocation problem. It specifies how the distributor can 
“intelligently” give data to agents in order to improve the 
chances of detecting a guilty agent. By adding fake objects 
to distributed set, the distributor can find the guilt agent 
easily. 
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